Developing a similarity searching module for patient safety event reporting system using semantic similarity measures

نویسندگان

  • Hong Kang
  • Yang Gong
چکیده

BACKGROUND The most important knowledge in the field of patient safety is regarding the prevention and reduction of patient safety events (PSE) during treatment and care. The similarities and patterns among the events may otherwise go unnoticed if they are not properly reported and analyzed. There is an urgent need for developing a PSE reporting system that can dynamically measure the similarities of the events and thus promote event analysis and learning effect. METHODS In this study, three prevailing algorithms of semantic similarity were implemented to measure the similarities of the 366 PSE annotated by the taxonomy of The Agency for Healthcare Research and Quality (AHRQ). The performance of each algorithm was then evaluated by a group of domain experts based on a 4-point Likert scale. The consistency between the scales of the algorithms and experts was measured and compared with the scales randomly assigned. The similarity algorithms and scores, as a self-learning and self-updating module, were then integrated into the system. RESULTS The result shows that the similarity scores reflect a high consistency with the experts' review than those randomly assigned. Moreover, incorporating the algorithms into our reporting system enables a mechanism to learn and update based upon PSE similarity. CONCLUSION In conclusion, integrating semantic similarity algorithms into a PSE reporting system can help us learn from previous events and provide timely knowledge support to the reporters. With the knowledge base in the PSE domain, the new generation reporting system holds promise in educating healthcare providers and preventing the recurrence and serious consequences of PSE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Developing a Semantic Similarity Judgment Test for Persian Action Verbs and Non-action Nouns in Patients With Brain Injury and Determining its Content Validity

Objective: Brain trauma evidences suggest that the two grammatical categories of noun and verb are processed in different regions of the brain due to differences in the complexity of grammatical and semantic information processing. Studies have shown that the verbs belonging to different semantic categories lead to neural activity in different areas of the brain, and action verb processing is r...

متن کامل

Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...

متن کامل

A Semantic Search Algorithm for Ontology Matching

Most of the ontology alignment tools use terminological techniques as the initial step and then apply the structural techniques to refine the results. Since each terminological similarity measure considers some features of similarity, ontology alignment systems require exploiting different measures. While a great deal of effort has been devoted to developing various terminological similarity me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017